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Abstract. We present DNADroid, a tool that detects Android appli-
cation copying, or “cloning”, by robustly computing the similarity be-
tween two applications. DNADroid achieves this by comparing program
dependency graphs between methods in candidate applications. Using
DNADroid, we found at least 141 applications that have been the vic-
tims of cloning, some as many as seven times. DNADroid has a very low
false positive rate — we manually confirmed that all the applications
detected are indeed clones by either visual or behavioral similarity. We
present several case studies that give insight into why applications are
cloned, including localization and redirecting ad revenue. We describe a
case of malware being added to an application and show how DNADroid
was able to detect two variants of the same malware. Lastly, we offer
examples of an open source cracking tool being used in the wild.

1 Introduction

In the past few years, mobile phones sales have grown explosively. As of Novem-
ber 2011, Android has dominant smart phone marketshare [9], with phone sales
recently reaching 850,000 activations per day [24]. The Android operating system
provides the core smartphone experience, but much of the user experience relies
on third-party applications. To this end, Android has numerous marketplaces
where users can download third-party applications that enable easy access to
social networking, games, and more. As with traditional desktop applications,
there is a need to protect users from malicious applications and developers from
plagiarists who wish to benefit from a legitimate developer’s hard work.

Developers can release applications on the official Android Market and/or on
any one of a number of third-party markets. They can charge directly for their
applications, but many choose to instead offer free applications that are ad-
supported or contain in-game billing for additional content. Some applications
have both a premium (paid) and free, ad-supported version.

⋆ Sandia National Laboratories is a multi-program laboratory managed and operated
by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation,
for the U.S. Department of Energys National Nuclear Security Administration under
contract DE-AC04-94AL85000.



(a) Google Market

br.com.passeionaweb...

Ads: googleads

(b) EoeMarket
com.ttmobilegame...

Ads:: wooboo

Fig. 1: A pair of cloned applications. This paper detects cloning based on code
similarity only, as an application’s UI may be easily changed. Caption lists the
market, package name and ad library associated with each application.

It is important to maintain a healthy market environment to encourage de-
velopers to continue creating applications. One important aspect of a healthy
market is that developers are financially compensated for their work, an issue
we investigate in this paper. There are several ways developers may lose po-
tential revenue: a paid application may be “cracked” and released for free or
a free application may be copied, or “cloned”, and re-released with changes to
the ad libraries that cause ad revenue to go to the plagiarist. In the latter case,
the plagiarist may modify an existing library in an application, replacing the
developer’s client ID3 with her own, or she may insert a new ad library that
gives revenue to the plagiarist. Unfortunately, the openness of Android markets
and the ease of repackaging Android applications contribute to the ability of
plagiarists to clone applications and resubmit them to markets. Unlike Apple’s
App Store, where applications must pass a review process, applications on most
Android markets are distributed without review. The official Android Market,
however, recently added a service that scans new applications [35]. Although
Google claims Bouncer drastically reduced the amount of malware installed by
users, its effects on clones, which may not be malicious towards the user, is
unknown.

Android application cloning has been reported by developers and the aca-
demic community [22, 23, 41]. An example we discovered, Fig. 1, shows the
screenshots of two applications that are similar both in their UI and code, but
were uploaded to different markets by different developers. Our analysis found
the two to have significant code overlap, suggesting that at least one is a clone4.

3 A client ID is a developer-unique string or number used by advertisers to determine
who should be compensated when an ad is displayed or clicked.

4 Potentially they could both be clones of an application we have not analyzed.



Since it is straightforward to detect directly copied code, we expect plagiarists
to disguise their code to evade detection. To combat these disguises, we need
robust techniques for detecting Android application cloning. We develop a tech-
nique based on program dependence graphs (PDGs) because it is has been shown
to be effective in resisting many types of detection evasion techniques, such as
statement reordering, insertion, and deletion [34]. Additionally, since it is uncom-
mon for PDGs to be the same for independently developed code, our technique
has a very low false positive rate.

Our contributions in this paper are as follows: (1) We have designed and im-
plemented DNADroid, a tool for detecting cloned Android applications. DNADroid
detects code clones based on PDGs and therefore resists common program trans-
formations. (2) We ran DNADroid on applications downloaded from thirteen
Android markets. DNADroid detected at least 141 applications that have been
cloned. We show examples of applications being cloned multiple times by dif-
ferent developers, in one case up to seven times. (3) We demonstrate the very
low false positive rate of DNADroid — we have manually verified, through UI
or functionality comparisons, that all applications detected by DNADroid are
in fact clones. (4) We present five case studies that illustrate different goals of
mobile application plagiarists.

2 Background

Android Markets As Android has increased in popularity, the number of ap-
plications has rapidly increased [21]. Developers can publish in the official An-
droid market for a one-time $25 dollar fee, or use alternative markets such as
SlideMe [14] and GoApk [10] which often only require an email address to pub-
lish applications. Unlike Apple’s App Store, Android markets tend not to vet
applications but rather rely on user feedback. This relaxed policy makes it easier
for people to clone, modify, and redistribute applications. Finding these clones is
important to protect developers’ intellectual property and revenue streams and
to alert users of potentially malicious clones.

Android Application Structure Applications are distributed in Android
Packages (APKs). These packages contain everything that the application needs
to run- from resources like images and XML files specifying UI layouts to the
application code. APKs also include a manifest XML that specifies a number
of aspects about the application, including its name, version information, the
package (or namespace) of the code, the permissions it requires to execute, and
much more. Android applications are primarily developed in Java, though native
code may be used. The Java source code is compiled to Java byte code and then
converted into the Dalvik executable (DEX) format. Although similar to Java
byte code, DEX byte code is incompatible with the Java virtual machine and
instead runs on the Dalvik virtual machine. The conversion of Java byte code to
DEX byte code is largely reversible and there are several tools that handle this
conversion. We analyze only the DEX byte code and leave native code analysis
for future work.



3 Threat Model

Our goal is to find cloned Android applications. We assume that the plagiarist
has access to the compiled APK file that has been uploaded to an Android
market. We also assume that the plagiarist will change some part of the file
in order to change its cryptographic hash, as detecting identical applications is
trivial.

Definition of “Clone” Clones occur when two applications (1) have similar
code but (2) have different ownership. Therefore, clone detection differs from
code reuse detection because the latter is concerned with only the first criterion.
Because of the second criterion, DNADroid ignores (1) third-party libraries (for
advertising, additional functionality, etc.), since they are intended to be reused
and (2) multiple versions of the same application if they have the same ownership.
Every Android application is signed by the owner’s private key before being
uploaded to a market. We determine two applications to have the same owner if
they are signed by the same key.

We use the term owner rather than developer to describe the entity which
published the application because a plagiarist illegitimately claims ownership of
an application by publishing it under her own name without having developed
the core functionality. Additionally, it is the owner that receives the revenue
generated by the application, not the original developer.

Resistance to evasion techniques A plagiarist will most likely modify the
cloned code to evade detection. We design DNADroid to resist all the following
evasion techniques: (1) High level modifications: Modify package, class, method
and variable names as well as add or delete classes and methods. Create, change,
or delete constants. (2) Method Restructurings: Move methods between classes,
split a large method into multiple smaller methods, or combine multiple methods
into a larger one. (3) Control Flow Alterations: Swap the if and else branches
after negating the truth value. Change for loops to infinite while loops with
a break statement or vice versa. Rewrite loops using goto statements. Switch
and if/else statements may be swapped and individual cases may be reordered,
created or removed. (4) Addition/Deletion: Insert code that does not affect the
value of computed results or delete existing code. (5) Reordering : Reorder any
code segments that are data and control independent.

Non goals We do not attempt to find cloning in native code in an appli-
cation. As only a small percentage (7%) of the 75,000 applications we analyzed
include native code, this is currently acceptable. Additionally, it is significantly
more difficult for a plagiarist to understand and modify native code than DEX
byte code. If a plagiarist does copy native code from an application, there is a
good probability that she will steal DEX byte code as well, which DNADroid
would find.

DNADroid does not attempt to determine which applications are the victims
and which are clones. Without external knowledge, this is difficult to do in
general based on the code alone. Simple solutions like comparing application
release dates or file sizes do not work in all cases, for example when a plagiarist



steals beta releases [23] or when a plagiarist replaces an advertising library with
a different, smaller one.

4 Clone Detection Approaches and Related Work

We describe several approaches for statically detecting cloned code, explain-
ing their strengths and weaknesses, and conclude with the method used by
DNADroid. As Android applications are largely interactive, dynamically detect-
ing cloned code would face the same scalability limitations as TaintDroid [28],
where authors had to manually interact with each application. This eliminates
techniques such as [32, 37] for detecting similar Android applications. We also
list and categorize related work, motivating the need for DNADroid.

Feature Based Feature based approaches analyze a program and extract a
set of features. Plagiarism between two programs is detected by comparing the
extracted features from the programs. The features chosen can vary significantly,
from number or size of classes, methods, loops, or variables to included libraries.
This approach is limited because it discards so much information about the
structure of the programs. Feature based systems are highly susceptible to having
a low detection rate or high false positive rate.

Structure Based Structure based systems convert programs into a stream
of tokens and then compare the streams between two programs. By converting
programs into a stream of tokens and ignoring easily changed constructs such
as comments, whitespace, and variable names, structure based systems detect
plagiarism more robustly than feature based systems. Examples of this approach
include JPLAG [38], Winnowing [40] and MOSS [18]. Comparing DEX byte code
streams could be a quite quick and scalable method to find exactly or near exactly
copied code.

Unfortunately, the byte code streams contain no higher level semantic knowl-
edge about the code, making this approach vulnerable to code modifications. For
example, structure based approaches cannot determine if one or more instruc-
tions in the stream have been spuriously added and do not contribute to the
outcome of the program. Winnowing [40] attempts to find plagiarism with mod-
ifications using k-grams, by finding common token substrings of length k. If the
differences between the programs are relatively infrequent or tend to be greater
than k tokens apart then the comparison will find many k -length token streams
in common. However, a wily plagiarist could simply insert a random instruction
every few instructions to utterly break the stream comparison.

Program Dependency Graph (PDG) Based A Program Dependence
Graph (PDG) represents a method in a program, where each node is a statement
and each edge shows a dependency between statements. There are two types of
dependencies: data and control. A data dependency edge between statements s1
and s2 exists if there is a variable in s2 whose value depends on s1. For example,
if s1 is an assignment statement and s2 references the variable assigned in s1 then
s2 is data dependent on s1. A control dependency between two statements exists



if the truth value of the first statement controls whether the second statement
executes.

The evasion techniques discussed in our threat model (Sect. 3) hardly change
a method’s PDG. If the copied parts of the program behave the same as their
original counterparts, they should have the same dependencies between the input
and output variables. Since these dependencies do not change even after signif-
icant disguises have been applied to the copied code, PDG-based plagiarism
detection is much more robust than structure based systems [34]. As we expect
plagiarists to actively try to hide their work to various extents, this robustness
is essential.

Android Clone Detection There have been several recent papers which
apply some of the above techniques to Android, here we briefly describe their
approaches. We note that all these approaches are structure based or structure
based approximations (using hashing).

Androguard [19] supports several standard similarity metrics including nor-
mal compression distance (NCD) and the comparison of the SHA256 hash of
methods and basic blocks. NCD utilizes compressibility as a measure of similarity
as two similar strings are more compressible than each on its own. DEXCD [27]
tokenizes the opcodes in a decompiled APK and then attempts to find simi-
lar streams of opcodes between applications. DroidMOSS [41] computes fuzzy
hashes of each method in the APK and combines them to form a hash for the
entire APK. It then compares the fuzzy hashes of APKs to detect similarity
based on the individual method hashes that both APKs share.

None of these tools use any semantic information to aid in detecting plagia-
rism. This makes them susceptible to evasion techniques discussed in Sect. 3. As
such, we created DNADroid to more robustly detect the plagiarism of Android
applications.

5 Methodology

DNADroid, as depicted in Fig. 2, proceeds in two stages. First, pairs of poten-
tially cloned applications are selected based on their attributes. Then, the code
of each pair of applications is examined to determine similarity.

5.1 Selecting Potentially Cloned Applications

The goal of an application plagiarist is to entice unwary users to choose her
cloned application instead of the original. Since users find most applications
through search, the plagiarist wishes to construct the name and description
of her cloned application to resemble those of the original application so that
both applications appear together in queries. Based on this observation, the first
step of DNADroid is to select similar applications based on their attributes. As
mentioned in Section 3, we do not consider pairs of applications signed by the
same key, as they share a developer.
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Fig. 2: Overview of DNADroid.

Determining Application Similarity Based on Attributes A plagia-
rist’s goal is to have users install her clone so she will often use meta information
that is similar to the victim application to describe the clone. By using similar
meta information, a clone is more likely to appear in search queries with the
victim. To mimic the search engines on Android markets, we use Solr [20], an
open source enterprise-grade search platform from the Apache Lucene project,
to index all the attributes of the applications, including name, package, market,
owner, and description. In order to find clone candidates, we use Solr’s fuzzy
search on the meta information of one application to determine which appli-
cations are similar. These similar applications are fed into the second stage of
DNADroid.

Although we found Solr effective in finding similar applications, DNADroid
could use other tools for the same purpose, including using the markets’ search
and recommendation features directly.

5.2 Detecting Code Clones

The second stage of DNADroid determines the code similarity of a pair of ap-
plications.

Constructing PDGs We convert both applications’ code from the DEX
format to a JAR using dex2jar [39]. 5 We then utilize WALA [25] to construct
PDGs for each method in every class of the applications. We create the PDGs
with only data dependency edges so that our detection is more robust against
statement reordering, insertion and deletion

Comparing PDGs DNADroid detects similarity between two applications
by finding semantically similar code at the method level.

Excluding Common LibrariesMany applications include third-party libraries,
such as the ad library Admob or the Facebook API. As these libraries are

5 There are other tools available to convert from DEX to JAR, however, we found
that dex2jar worked the best in practice. If a better tool became available, we could
easily replace dex2jar with it.



not written by the owners of the applications, they should not be included
in the clone detection. Libraries tend to have a common package name, like
com.admob.android or com.facebook.android. However, we cannot simply filter
classes based on package name alone, as a malicious owner could reuse a popular
package name for her code or could insert malicious functionality into the library
itself. We dumped both the package name and SHA-1 hash of known library files
for thousands of applications and recorded the most frequent SHA-1 hashes for
each library. This allows us to exclude common library code from analysis while
remaining resistant to tampering.

Lossless and Lossy Filters Once we have constructed the PDGs for each
method in A and B, we apply two fast filters to exclude method pairs that are
unlikely to be clones [34]. We first apply the lossless filter, which removes PDGs
from consideration that are smaller than a specified size (< 10 nodes). Small
matches between methods are more likely to occur by chance and these matches
are often from trivial, boilerplate code.

Next we apply the lossy filter, which discards method pairs that are unlikely
to match due to a difference in the distribution of types of nodes in the two PDGs.
For example, a PDG that contains many method invocation nodes is unlikely
to match one with none. First, we calculate a frequency vector for each of the
methods in the pair. This vector counts how many times a specific node type
occurs in the PDG. A method with five arithmetic operations would have a five
in the dimension of the vector corresponding to arithmetic operations. We then
compare these two vectors using hypothesis testing which calculates how likely
one distribution is an observation from the first. Specifically, the hypothesis test
we use is the G-test, which is a log likelihood ratio test. If the likelihood is below
some significance threshold, α, then we exclude the pair because the graphs have
a low probability of being similar. Even though this filter may exclude similar
PDGs in theory (hence the name lossy), we demonstrate experimentally that
these cases are rare in practice with an α value of 0.05 (Sect. 6.4).

Subgraph Isomorphism If a pair of PDGs survives the above filters, the final
test for similarity is subgraph isomorphism, which attempts to find a mapping
between nodes in PDGA and nodes in PDGB . Subgraph isomorphism is NP-
Complete; however, when used for comparing PDGs, empirical evidence shows
that it is often efficient because a PDG represents a single method, which de-
velopers tend to keep within a maintainable size. Additionally, PDGs are com-
prised of different statement types, which greatly reduces the possible mappings
between two PDGs, as only nodes of the same statement type will match. We use
the VF2 algorithm to compute subgraph isomorphisms, which is a backtracking
algorithm geared towards matching large graphs [26]. VF2 takes advantage of
the fact that PDGs contain a variety of node types, which restricts the total
number of possible pairs of nodes for testing.

Computing Similarity Scores We determine the similarity of a pair of
applications based on their matched PDG pairs. For each method f (excluding
the methods in known libraries) in application A, let |f | be the number of nodes
in this method’s PDG. Find the best match of this PDG in B’s PDGs and denote
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it as m(f). Our metric, similarity score, is the ratio between the sums of the |f |
values and the |m(f)| values:

simA(B) =

∑
f∈A

|m(f)|∑
f∈A

|f |
(1)

Equation 1 shows the portion of application A that is matched by code in
application B.

6 Evaluation

We collected 75,000 free applications from thirteen Android markets: the of-
ficial Android market [31] and a number of third party markets [1, 3, 2, 5–7,
10–14]. From these applications, we randomly selected 9,400 pairs from the po-
tential clones identified by the first stage of DNADroid based on their attributes
(Sect. 5.1). The second stage of DNADroid determined which of these pairs were
indeed clones based on code similarity (Sect. 5.2).

We used the Hadoop [4] MapReduce framework to parallelize DNADroid and
HDFS to share data across a small cluster of one server-class and three desktop
machines. The average throughput of DNADroid on this small cluster is 0.71
application pairs per minute.

6.1 Similarity Between Applications

We define application clones as a pair of applications that have similar code
but different ownership. The comparison of each pair of applications A and B
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Fig. 4: Distribution of clone cluster sizes

produces two similarity scores, simA(B) and simB(A), as defined in Equation 1.
simA(B) is the percentage of code in A that is matched by code in B. A high
similarity score shows that a substantial portion of one application is present in
another, providing evidence of code cloning.

Figure 3 show the distributions of the similarity scores among all the pairs of
applications analyzed: Fig. 3a uses the larger similarity score in each application
pair while Fig. 3b uses the smaller score. Figure 3a shows that 103 application
pairs have similarity scores above 90%, 43 application pairs between 80% and
90%, and 45 application pairs between 70% and 80%.

In this paper, we define two applications to be clones when at least one of the
applications has a similarity score over 70% (max(simA(B), simB(A)) ≥ 70%).
We choose to use the max similarity score of the pair to avoid the following prob-
lem: a malicious developer may add a significant amount of code to the cloned
application, causing the original application code to match a small percent of
the cloned application. However, she cannot influence the content of the original
application, which has already been released. The original application will still
be highly matched by the cloned application, causing DNADroid to identify the
clone pair. Using a 70% similarity score threshold, DNADroid found at least 191
application pairs in which one or both of the applications are clones.

6.2 Clustering Cloned Applications

Are many Android applications cloned a small number of times or are a rela-
tively few cloned many times? We attempt to gain insight into this question by
clustering applications based on their computed similarities. Clusters are com-
puted using the following algorithm: for each pair of applications, A and B, if
either simA(B) or simB(A) is above the threshold, then A and B are in the same
cluster. After running this algorithm over all pairs of applications, we have a set
of clusters, each of which contains at least 2 applications.

Figure 4 shows the distribution of the sizes of clone clusters at two different
similarity score thresholds. The majority of the clone clusters have just two



applications; however, there are larger clusters with the largest having seven
applications. Figure 4a illustrates that, at a 70% threshold, DNADroid found
at least 141 applications that are victims of cloning. As each clone cluster of
applications has at least one victim application, the number of clusters is a
lower bound on the number of victim applications.6

It is instructive to examine the clone clusters. Figure 5 shows two clusters.
Figure 5a shows a cluster of six applications. The bottom three applications
(21ad, aa87, and f59d) are signed by the same private key (i.e., written by
the same author) and have the same package name (com.bwx) but have differ-
ent version numbers. The top application (714a) has a different package name
(com.zhanghuisns) and is signed by a different private key. Finally, the middle
two applications are signed by the same private key and have the same package
name (com.mybooft). Based on the key signatures, we can split the graph into
three families - top, middle and bottom. Using the similarity scores and the ver-
sion information, it appears that the middle family most likely cloned from an
ancestor of the bottom family and that the top family may have cloned from the
middle or bottom family.

Figure 5b shows similar relationships between different families of applica-
tions, where a seed family appears to have been cloned multiple times by differ-
ent developers. These figures demonstrate that clustering is an effective tool in
analyzing relationships between cloned applications.

6.3 Visual and Behavioral Verification

To confirm that the application pairs identified by DNADroid are indeed similar,
we examined their GUI and user interactions. Figure 7 shows the screenshots
of some of the application pairs that were detected by DNADroid as clones. It
takes only a quick glance to determine that both screenshots in each application
pair are indeed very similar. For application pairs whose initial screen shots are
drastically different, we manually ran and interacted with them to verify that
they have similar functionality. Manual verification confirmed that every appli-
cation pair found by DNADroid were in fact clones, yielding an experimental
false positive rate of 0%.

6.4 Filter Performance

Filter Effectiveness DNADroid uses several filters to improve its speed and
scalability by excluding method pairs that are unlikely to match. A naive ap-
proach would require O(n ∗ m) method comparisons, where n and m are the
number of methods in each application. To reduce the number of method pair
comparisons, DNADroid uses three filters (Sect. 5.2). The library class filter ex-
cludes on average 27.16% of each application’s classes. The lossless and lossy

6 The victim application may or may not be a member of the clone cluster. The latter
case arises if we downloaded only the clones of the victim application but not the
victim itself.
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Fig. 5: Application clone clusters. Each node represents an application. The
label in each node contains the SHA-1 hash prefix, name, package, version name,
and version code of the application. Each solid edge from Application A to
Application B means that a large percentage (> 70%) of A is found in B, where
the top number on the edge is the similarity score of A in B, and the bottom
number (in parentheses) is the similarity score of B in A. A dotted line links
two applications by the same author (have the same public key signature).

filters on average exclude 33.88% and 2.62% of the methods in an application,
respectively. Combined, these three filters reduce DNADroid’s search space by
90.04%.

Filter Accuracy Of the three filters, only the lossy filter may exclude in-
teresting methods pairs that would have matched7. We wish to ensure that our
lossy filter rarely rejects similar method pairs, as this would cause DNADroid
to underreport the similarity of applications and potentially miss clone pairs.

To measure the accuracy of the lossy filter, we randomly selected 250 appli-
cation pairs already examined by DNADroid and reran them without the lossy
filter. Figure 6a is a CDF of the application similarity scores, both with and

7 The class filter excludes known common libraries and the lossless filter excludes small
methods, neither of which constitute interesting code reuse.
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Fig. 6: Examining lossy filter effectiveness

without the lossy filter. The figure shows that the lossy filter has negligible im-
pact on similarity scores. Therefore, the lossy filter does not cause DNADroid
to miss clone pairs it would otherwise have found.

Figure 6a explored the macro effects of the lossy filter, in Fig. 6b we examine
its effect on individual method pairs. Figure 6b shows the histogram of the
similarity scores of the method pairs excluded by the lossy filter on a log-y scale.
As expected, more than 99.86% of these similarity scores are zero (The similarity
score of A in B, simA(B), is zero if the PDG A is not subgraph isomorphic to the
PDG B). Only a few similarity scores exceed 40%, and no score exceeds 60%.

This experiment demonstrates that the lossy filter is highly accurate: it sel-
dom excludes method pairs that are likely clones and it negligibly affects the
similarity scores of application pairs.

7 Case Studies

“Benign” Cloning DNADroid found 30 pairs that both have a 100% similarity
score using our matching algorithm. For the few that we manually reviewed,
we found that the applications were indeed identical, apart from having String
values in the application translated. Since these strings are constants, changing
them doesn’t change the PDGs. There seems to be no incentive for the plagiarist
apart from providing an application to an otherwise excluded audience. For the
latter reason, we believe these pairs to be cases of “benign” cloning, since there
appears to be no benefit to the plagiarist. However, without manual review, we
cannot confirm that they are all “benign.”

Changes to Advertising Libraries A number of clone pairs involved ap-
plications that had changes to their advertising libraries. As stated in Sect. 5,
DNADroid can discern application from library code in APKs. Using this and
our coverage values, we can see when an application has most likely been cloned
for monetary gain.



An example of such cloning is a download manager, XWind Downloader,
which we have found on three different markets: the official Android Market [31],
GoApk [10], and Freeware Lovers [8]. The versions available from the official Mar-
ket and Freeware Lovers have the same SHA-1 hash and were both published by
the same developer account name, which leads us to believe that the author has
officially published his application in both markets. The GoApk version, how-
ever, has a different SHA-1 hash and is signed with a different developer key. The
GoApk version has removed the Youmi [17] advertising library present in the
application from two other markets and has replaced it with the WooBoo [16] ad-
vertising library. DNADroid found 99.9% of the official Android Market version
within the GoApk version, an almost sure sign of cloning.

For the 141 applications that we believe to be the victims of cloning, we
compared the libraries that DNADroid detected in the victim with those in
the clone. We found that 91 (65%) of these pairs had different libraries, all
of which included changes to advertising libraries. This number suggests that
plagiarists are often fiscally motivated, attempting to siphon ad revenue from
popular applications.

Malware Added to an Application “HippoSMS” is a malicious appli-
cation recently discovered by [33] that we downloaded and compared to our
collection of applications.

We found that it shares the same package name as a Chinese video player we
crawled from GoApk. Both applications require a surprising number of sensitive
permissions; the video player requires 11 permissions while the malware requires
10. According to Stowaway [29], a tool for detecting over privileged applications,
the seemingly benign video player requires 6 permissions that it doesn’t use,
whereas the malware only requires 1 extra. Given the number of permissions
the video player requires, we conjecture that its developer may have intended
to insert malware into the application at a later time, or that the video player
is a clone itself. When compared with DNADroid we discovered that 98.57% of
the video player code is in the malicious application, a near certain indicator of
cloning.

Two Variants of the Same Malware This case study consists of two ma-
licious applications that are identified by VirusTotal [15] as being variants of the
“BaseBridge” malware family. Both applications have been stripped of meaning-
ful class and method names. However, this obfuscation did not fool DNADroid —
DNADroid found coverages of 35% and 28% between the two variants. Manual
review confirmed that the methods matched between the applications perform
the malware functionality. This demonstrates the potential of DNADroid to aid
markets in automatically detecting similar variants of the same malware, though
significant transformations could subvert DNADroid’s current implementation.

Use of Freeware Cracking Tool in the Wild During our exploration of
public work in Android application cloning we encountered the cracking tool An-
tiLVL [36]. AntiLVL attempts to automatically subvert several types of license
protection mechanisms used in Android applications including the Android Li-



cense Verification Library (LVL), Amazon Appstore DRM and Verizon DRM.
We found applications cracked by AntiLVL hosted on several markets.

AntiLVL has several primary mechanisms for subverting license protections.
After decompiling an application with baksmali [30], AntiLVL attempts to sub-
vert common license enforcement checks by rewriting them to always return
successfully. AntiLVL also inserts a new file, SmaliHook.class in the applications
it rewrites. This class contains methods to spoof the device ID, make fake li-
cense checks which always return true, and hide AntiLVL’s modifications from
the application itself by returning the original applications file size, MD5, and
signatures for the original application. We also found that the cracked applica-
tions occasionally show evidence of AntiLVL use in their CERT.SF, a signature
file included in applications that lists the digital signatures of every file in the
application.

We found 189 applications containing SmaliHook.class and 235 containing
references to AntiLVL in their signature files for a total of 310 unique applica-
tions. Given the nature of AntiLVL, it’s almost certain that these applications
are clones of paid applications. Interestingly, even though only 8% of our to-
tal applications were acquired from Chinese markets, 88% of the applications
including AntiLVL traces were from Chinese markets. Only four applications
containing AntiLVL were obtained from the official Android market, despite it
being the source of 65% of our applications. Two of the four applications were
different versions of the same application which Google has since removed. Of
the remaining two applications on the Android market, both are live and have
“50,000 to 100,000” installs as of March 2012.

8 Discussion

False positive Since it is a serious allegation to claim an application is a clone,
we design DNADroid to have a very low false positive rate. We manually verified
that all the application pairs that DNADroid identified as clones are indeed sim-
ilar, with either similar start-up screens or similar user interactions (Sect. 6.3).

False negative DNADroid may overlook cloned applications due to a few
reasons. First, DNADroid uses Solr to select candidate cloned applications based
on their attributes, such as name and description (Sect. 5.1). This is based on
the observation that cloned applications often have similar attributes as the
original so that they appear together in market search results. Therefore, if the
plagiarist crafts the attributes of her application to avoid being identified as
having similar attributes to the original application (e.g., by using a different
language), it can avoid detection by DNADroid. However, by attempting to
evade initial similarity detection, a plagiarist may jeopardize the chances of her
clone being installed. This is not a fundamental limitation, as DNADroid would
still find a high code similarity between the two if compared. If a better tool to
identify similar applications becomes available, DNADroid could easily leverage
it.



Another source of false negatives is program obfuscation. By using PDG-
based clone detection, DNADroid can resist common program transformations
(Sect. 3). However, there exist advanced program transformations that can evade
PDG-based clone detection. This is a fundamental limitation of DNADroid. Even
though these advanced transformations are feasible, they require much more ef-
fort by the plagiarist (ultimately, the plagiarist can reimplement the application,
which is not cloning in the strict sense).

Comparison to Other Approaches We ran Androguard [19] against the
same 191 pairs that DNADroid identified as clones. Androguard performed well
in some cases, but crashed on 24 pairs and found very low coverage values for
10 pairs, causing it to miss 18% of the pairs DNADroid found. We intended to
compare DNADroid to DEXCD [27] and DroidMOSS [41] but DEXCD had
problems running on the pairs DNADroid identified and DroidMOSS is not
currently publicly available. We hope to compare results in the future.

Performance There exist more efficient algorithms for detecting code clones,
however, these algorithms trade robustness for speed. Robust techniques, such
as those utilized by DNADroid are more expensive but result in fewer false
positives and false negatives. Fortunately, we can take advantage of inexpensive
meta information clustering and the inherent parallelism in clone detection to
make DNADroid practical.

9 Conclusion

The explosive growth of Android devices over the past few years has led to a
booming mobile application community. Unfortunately, with increased incentives
and low barriers to entry, plagiarists and clones have followed. To combat cloning,
markets need robust techniques to identify these clones, as application clones
harm the market ecosystem. We present DNADroid, a tool for finding clones on
a large scale. DNADroid selects likely clone candidates based on their attributes
and then robustly compares their code for significant overlap. We evaluated
DNADroid on applications crawled from thirteen Android markets. DNADroid
identified at least 141 applications that have been cloned and an additional 310
applications that were cracked with AntiLVL, an open source Android cracking
tool. We describe five case studies which provide insight into different motivations
for plagiarists. DNADroid has a very low false positive rate — we have confirmed
that all the applications detected by DNADroid are indeed clones via visual or
behavioral verification. Our findings indicate that DNADroid is an effective tool
to aid in the fight against mobile application cloning.
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Fig. 7: Screenshots of pairs of cloned applications.


