
Investigating User Privacy in Android Ad Libraries
Ryan Stevens∗, Clint Gibler∗, Jon Crussell∗†, Jeremy Erickson∗† and Hao Chen∗

∗University of California, Davis
{rcstevens, cdgibler, jcrussell, jericks, chen}@ucdavis.edu

†Sandia National Labs, Livermore, CA
{jcrusse, jericks}@sandia.gov

Abstract—Recent years have witnessed incredible growth in the
popularity and prevalence of smart phones. A flourishing mobile
application market has evolved to provide users with additional
functionality such as interacting with social networks, games, and
more. Mobile applications may have a direct purchasing cost or
be free but ad-supported. Unlike in-browser ads, the privacy im-
plications of ads in Android applications has not been thoroughly
explored. We start by comparing the similarities and differences
of in-browser ads and in-app ads. We examine the effect on user
privacy of thirteen popular Android ad providers by reviewing
their use of permissions. Worryingly, several ad libraries checked
for permissions beyond the required and optional ones listed
in their documentation, including dangerous permissions like
CAMERA, WRITE CALENDAR and WRITE CONTACTS. Further,
we discover the insecure use of Android’s JavaScript extension
mechanism in several ad libraries. We identify fields in ad
requests for private user information and confirm their presence
in network data obtained from a tier-1 network provider. We also
show that users can be tracked by a network sniffer across ad
providers and by an ad provider across applications. Finally, we
discuss several possible solutions to the privacy issues identified
above.

I. INTRODUCTION

Smart phones have rapidly increased in popularity in recent
years, giving rise to a booming mobile application market.
Many developers release their applications for free and gen-
erate revenue from ads. To make ads more relevant to the
user, ad providers, who decide which ads a user will see,
wish to target a user based on the information specific to
the user. The more targeting information the ad provider can
acquire, the more profitable the ads will be. When an ad library
embedded in a mobile application on the user’s device requests
an advertisement, it sends information about the device and
user to the ad server, thus raising concerns about user privacy.

With the torrent of privacy-related articles in the media,
both public and private sectors have been working to alleviate
growing concerns with how user privacy is handled on the
Internet. Advertisers under the Digital Advertising Alliance
have chosen to implement “Do Not Track” features into their
services; however, the functionality is largely being imple-
mented for browser-based advertisements and it is unclear
exactly how the technology will operate [34]. A number
of policy solutions are being considered as well, including
requiring all mobile applications to include a privacy policy
detailing the personal information the app collects [39] and
a more general “Consumer Privacy Bill of Rights” that is
supposed to outline the rights of online users to protect their

privacy [35]. We need technical solutions to facilitate ad
providers satisfying these policies and to allow mobile users
to verify the conformance.

We consider two different entities who might infringe on
an Android user’s privacy. The first entity is an unscrupulous
ad provider. She might attempt to acquire more of a user’s
private data than is necessary for serving ads or more than is
declared in the documentation of the ad library. For example,
we found that several ad libraries do not mention the use
of certain permissions in their documentation. However, if
these permissions are available to the application using these
libraries, the libraries will take advantage of these permissions
to read private data. We call these undocumented permissions,
which might elude most application developers and users
(Section V). The ad provider could also try to track the user
across different applications by exfiltrating device IDs. The
second entity that might infringe on user privacy is a network
sniffer. None of the Android libraries that we analyzed use
encryption to protect ad requests. Although there are reasons
for not encrypting ad requests (Section VI), it exposes user’s
private data to network sniffers, ranging from open WiFi
access points to ISPs.

In this paper we examine popular ad providers for Android
applications. First, we analyze unique privacy concerns about
Android ad providers compared to in-browser advertising.
Then, we evaluate thirteen popular ad providers in detail.1

We examine which permissions they require and whether they
take advantage of undocumented permissions, what private
data they exfiltrate, and how they can track the user across
multiple applications. We also expose vulnerabilities in these
ad libraries that would allow an attacker on the network to
infringe on the user’s privacy (Section V-C). Based on our
study, we then recommend remedies to better protect user
privacy.

II. BACKGROUND

A. Android

Android is a Linux-based smart phone operating system.
Every Android application runs as a separate Linux user,
preventing one application from reading or manipulating an-
other’s private info or application code. Android requires

1We also studied the Flurry and Google Analytics analytics libraries as well
as the AdWhirl ad aggregator. However, since they contain no unique privacy
concerns not seen in the 13 ad libraries, we do not discuss them further.



applications to specify a list of permissions that govern how
they may access sensitive user information or use sensitive
functionality2. These permissions must be specified in the
application’s manifest file in order to use privileged function-
ality of the device. Upon application installation, users are
presented with a list of required permissions. The application
will only be installed if the user agrees to permanently grant
the application all of the requested permissions. Though users
know the capabilities of an application at a high level, how
the application uses its permissions in practice is unclear.

The lack of insight into an application’s use of sensitive
functionality is especially relevant on Android because of
the common development practice of including third-party
libraries. Developers use libraries to parse a specific file for-
mat, communicate with a popular web application, or provide
advertising functionality. Libraries in Android applications run
in the same process space as the application code and thus
have the same capabilities. This lack of differentiation gives
libraries the same privileges as application code, allowing it
to read application-specific private information or utilize func-
tionality granted by any permission the application declares.

B. Unique Device Identifier (UDID)

Android provides a number of methods for developers to
obtain a unique identifier for a device [5]:

• The ANDROID ID, a random hex string that is generated
during the first boot of a device. It does not require a
permission to access and is now the recommended unique
identifier for Android.

• The telephony device ID of the phone (IMEI for GSM,
MEID or ESN for CDMA).

• The static field android.os.Build.SERIAL, which also does
not require a permission to access. This has only been
available since Android 2.3 and does not reset when the
device is wiped.

• The MAC address for the phone’s Wifi or Bluetooth
adapter.

In the rest of the paper we will use unique device identifier (or
UDID) to represent any of the above identifiers that uniquely
identify an Android device3.

C. Online Advertising

We introduce online advertising by discussing common on-
line advertising terms as they apply to Android advertising. For
a more general definition of these terms, refer to the Internet
Advertising Bureau’s glossary of advertising terms [7].

• Ad serving is the on-demand process of choosing an ad
to display when the user requests one.

• When the user’s device requires an ad, it makes an
ad request to an ad server, which responds with the
advertisement that should be shown to the user.

2Examples include READ CONTACTS, RECORD AUDIO, and SEND SMS.
3We define UDID for our own purposes, not to be confused with the UDID

of Apple devices.

• The ad server is owned by an ad provider, who has
access to a pool of advertisers who pay the ad provider
to disseminate their ads to certain types of users.

• A publisher is either a website or an application that is
paid for displaying advertisements to users.

• Targeting is information associated with a particular user
such as age, gender, or location. Targeting information is
provided to the ad server in ad requests so that ads can
be chosen that match the user’s interests.

Web site advertisements are usually chosen dynamically
when the browser renders the HTML of the web page. The
web site contains an ad tag (typically an <iframe> or
<script> tag) whose src field is set to the ad server. The
ad tag is provided to the publisher by the ad provider to be
included in the page. Once the ad tag is rendered, the browser
makes a request to the ad server, which will respond with an
image and a click-through URL that the user will be redirected
to if they click the advertisement. The ad provider pays the
publisher for displaying the ads to users, and the advertisers
pay the ad provider for disseminating their ads. It is important
to note that this is how ad serving is conducted when users are
accessing the Internet through a web browser, both for mobile
and desktop browsers. In contrast, we focus on in-application
ads in this paper.

D. Advertising on Android

Advertisements for mobile applications are chosen much
like they are for browsers: an ad server is queried using an ad
request and the server responds with an ad to show to the user.
To make the ad request, Android ad providers give developers
a Software Development Kit (SDK) library, which provides
an API for displaying advertisements that abstracts away the
complexity of making an ad request, parsing the response,
and displaying the resulting ad image. Further, the SDK keeps
the developer from having to understand each ad provider’s
unique ad request format, allowing her to simply update the
SDK when there is a new version, minimizing changes in
application code. We will refer to the advertising SDKs as ad
libraries throughout the rest of the paper.

III. UNIQUE PRIVACY CONCERNS IN ANDROID
ADVERTISING

Here we consider three specific differences between in-app
advertising using an ad library and in-browser advertising:
mobile ad code is not subject to the same level of privilege
separation as it is in browsers, in-app ad code has greater
access to user information than in-browser ad code, and mobile
devices have more consistent user identifiers.

A. Lack of Privilege Separation Between Application and Ad
Code

Despite the benefits of using an ad library to facilitate
ad serving in mobile applications, it gives ad providers the
opportunity to run code on users’ devices with the same
permissions as the application that uses the library, allowing



the ad providers to exfiltrate data from the device. In browser-
based advertising, exfiltrating user information is difficult be-
cause of the same origin policy [40], which requires that code
external to the user’s machine cannot make requests to web
pages nor access content beyond the domain from which it was
served. JavaScript code provided by ad providers for a web site
is isolated from accessing any information that belongs to the
publisher’s web site, thus any information about the user must
be given to the ad provider explicitly (remember that for the
JavaScript code to be able to make an ad request, it must have
originated from the ad provider’s domain through either an
<iframe> or <script> tag). For example, if a browser-
based application requests the user’s GPS location and the
user grants these permissions, ad code on the web page cannot
access the GPS coordinates without the application passing the
data to the ad code. However on Android, the ad libraries have
the ability to gather specific user information on their own.
If an Android application has the ACCESS FINE LOCATION
permission, which gives the application the ability to access
the current user’s GPS coordinates, the ad library gets this
permission automatically. As we will discuss later, many of
the ad libraries we observed will check if this permission is
granted and automatically add the user’s GPS coordinates to
the ad request when available. In many cases, the developer
cannot turn this behavior off and may not be informed it is
occurring in the first place. We will go over some of the
implications of in-app ad code having the same privileges as
application code in Section V.

B. Detailed User Data

Applications installed on the user’s device may have more
privileged access to the user’s data, compared to applications
running in a browser. Browsers assume external code is un-
trusted and sandboxes it from a great deal of the functionality
of the underlying operating system. For example, JavaScript
code is typically unable to communicate with applications be-
yond the browser, and does not know what other applications
may be running on the user’s machine. However, with the
right permissions, Android applications are able to determine
which applications are running and installed. Likewise, mobile
applications can be given permission to write to the SD card,
read contacts, or read SMS messages, among many others.
Compounded with the lack of privilege separation between
app and ad code, this allows in-app advertising code to run in
a very privileged state compared with in-browser ad code. We
observe the private data each ad library collects and sends in
ad requests in Section VI.

C. Consistency of User Identifiers

Android applications are particularly lucrative to ad
providers because they provide a more consistent way of
tracking users compared with in-browser advertising. The
UDID discussed in Section II can be sent with the ad request
and allows the ad provider to track the user’s behavior over a
long period of time and between different applications which
include the same ad library. There is no way to track users with

this same level of consistency in a web browser; the common
tracking mechanisms, IP addresses and cookies, change over
time and may be reset by the user. However, resetting the
UDID values on Android either requires a factory reset or root
permission on the phone. We discuss implications in tracking
users using their UDID in Section VII.

We have discussed a number of differences between in-
browser advertising and in-app advertising that allow mobile
ad providers to potentially have greater power in violating
users’ privacy. Our goal in this paper is to determine if it
is common practice for ad libraries to abuse these privileges
or if insecure design decisions were made in building the
library that could expose users to greater privacy threats. In
the rest of the paper we analyze the most popular Android ad
providers for potential privacy vulnerabilities. Additionally, we
propose guidelines that would prevent these vulnerabilities in
the future.

IV. METHODOLOGY

Our objective was to examine the most popular ad providers
to gain the best insight into current Android ad provider
practices. However, there is no publicly available list that ranks
the popularity of ad providers. We chose the set of ad providers
reviewed in this paper by: (1) examining the prevalence of
each ad provider in real network traffic and (2) extracting
the libraries from the top 500 applications on the official
Android Market. Therefore, we used data from a tier-1 network
provider in the United States to determine the ad providers
that are the most popular in terms of the overall amount of
ad traffic. In practice, the amount of ad traffic is correlated
with the number of users using applications supported by the
ad provider, although factors like refresh rate and number
of advertisements displayed per window may influence these
results. Our final list combines these ad providers with the
most prevalent ad providers in the top 500 applications on the
official Android Market [19]. See Table I for a list of the ad
providers we consider.

For each ad provider, we wish to analyze the behavior of
their library: the permissions it checks for and the data it sends
over the network. To achieve this, we signed up as a developer
with each ad provider and downloaded a copy of the most
recent ad library available (as of February 2012). For each
library, we instrumented a sample application that made an ad
request to the provider using the library and captured the data
sent over the network. By observing the captures, we were
able to determine the fields, such as age or gender, that may
be present in the ad request. Additionally, we referenced the
providers’ documentation4 to determine how the fields were
populated, which were required for a successful ad request,
and which were optionally set by the developer. To ensure
these fields are present in live traffic, we manually verified
that ad requests from each ad provider actually contained the
relevant fields by observing them in the network stream of the
tier-1 wireless carrier. Section VI presents the results of our



Ad Library (version) IN
T

E
R

N
E

T

A
C

C
E

S
S

N
E

T
W

O
R

K
S

TA
T

E

R
E

A
D

P
H

O
N

E
S

TA
T

E

A
C

C
E

S
S

L
O

C
A

T
IO

N

C
A

M
E

R
A

C
A

L
L

P
H

O
N

E

W
R

IT
E

E
X

T
E

R
N

A
L

S
T

O
R

A
G

E

R
E

A
D

C
A

L
E

N
D

A
R

W
R

IT
E

C
A

L
E

N
D

A
R

R
E

A
D

C
O

N
TA

C
T

S

W
R

IT
E

C
O

N
TA

C
T

S

S
E

N
D

S
M

S

R
E

C
E

IV
E

B
O

O
T

C
O

M
P

L
E

T
E

G
E

T
A

C
C

O
U

N
T

S

R
E

A
D

L
O

G
S

A
C

C
E

S
S

W
IF

I
S

TA
T

E

adfonic (1.1.4) R R R
admob (4.3.1) R R

airpush (2-2012) R R R O R
buzzcity (1.0.5) R R R

greystripe (1.6.1) R R R
inmobi (3.0.1) R O O O X X
jumptap (2.3) R R R O

millennialmedia (4.5.1) R R R O R
mobclix (3.2.0) R O R X X X X X X X
mOcean (2.9.1) R R R O O O O O O O O
smaato (2.5.4) R R R O
vdopia (2.0.1) R R
youmi (3.05) R R R R R X

TABLE I: Ad SDK Permission Usage As specified in their online documentation, ad libraries may require a permission (R) or
declare it optional, but use it if available (O). Worryingly, some ad libraries check for and use undocumented permissions (X).

network traffic observations.

V. PERMISSIONS

In addition to monitoring network traffic, we analyzed each
ad library’s code to determine the sensitive information it
accesses.

A. Permission Classification

In its documentation, each ad library specifies the permis-
sions it requires to operate. Often, the ad library will further
specify a number of optional permissions that the ad library
can take advantage of to deliver more targeted advertising.
We find, in practice, there is a third category, undocumented
permissions. If an application has these permissions then
its ad library can take advantage of these permissions to
covertly access sensitive data. To ensure these undocumented
uses do not cause the application to crash, ad libraries can
dynamically check if they have a permission or catch a thrown
SecurityException.

Through review of the documentation of each ad library,
we obtained a list of the required and optional permissions.
We discovered the permissions each ad library may use in
practice by running Stowaway [13] on a test application
consisting of only the ad library. Stowaway detects which
Android framework API methods the application accesses
and, using an internal mapping between API methods and
required permissions, shows the permissions the application
may need to run. This set minus the required and optional
permissions gives the undocumented permissions described

4For ad provider documentation reference [1, 2, 3, 8, 22, 26, 27, 37, 33,
36, 42, 45, 46]

above. We manually investigated each of the undocumented
permissions to determine if they were indeed being used.

B. Permission Misuse

We present the three sets of permissions in Table I. Some
permissions that have low impact on a user’s privacy, such
as WAKE LOCK and VIBRATE were excluded from the re-
sults. Also, we chose to collapse Android’s two location
permissions, COARSE and FINE, because COARSE location
information may be specific enough to infringe on a user’s
privacy. As expected, most ad libraries require a similar
core set of permissions (INTERNET, ACCESS LOCATION,
ACCESS NETWORK STATE and READ PHONE STATE). How-
ever, some ad libraries, such as Mobclix, have many more
undocumented permissions. Many of these undocumented per-
missions seem unnecessary to display ads, such as SEND SMS
and READ CALENDAR. We conjecture that some of these
permissions may be used to create a more complete user profile
by actively collecting personal information.

The Mobclix ad library is particularly noteworthy among
the set we analyzed because it utilized seven undocu-
mented permissions. These include four invasive permissions:
READ CALENDAR, WRITE CALENDAR, READ CONTACTS,
and WRITE CONTACTS. Through manual analysis, we have
verified that Mobclix contains functionality to read from and
write to a user’s calendar and contacts databases, although
it will prompt the user before doing so. The mOcean and
Inmobi ad libraries contain functionality to start phone calls
and add events to a user’s calendar without user interaction.
Additionally, mOcean can send SMS messages without user
interaction. These largely undocumented “features” are quite
alarming.



C. JavaScript Interface

More disturbingly, we discovered that seven of the ad
libraries we analyzed add a JavaScript interface to a Web-
View object, and in doing so, four of them open an avenue
to attack a user’s device. Android provides a mechanism
allowing JavaScript code running in a WebView object to
invoke a special set of designated application code through an
interface. This can be useful for cross-platform applications
written in JavaScript to remain cross-platform compatibility
while incorporating platform-specific actions, such as Toast
messages [20]. Additionally, this interface can be used to
dynamically invoke other methods during runtime, similar to
Java reflection. However, the Android documentation specif-
ically warns against running untrusted JavaScript inside the
WebView object, as the untrusted code can also access the
interface.

1) Vulnerable Ad Libraries: Seven of the thirteen ad li-
braries we analyzed implement a JavaScript interface. We
have confirmed that four of these seven will run external code
within the WebView with a JavaScript interface. Functionality
exposed by the interfaces for the different ad libraries is as
follows:

• Mobclix: exfiltrate and/or modify the user’s calendar and
contacts, exfiltrate user’s audio and image files, and turn
on/off the camera LED.

• Greystripe: get and/or set user’s cookies.
• mOcean: send SMS and email messages, start phone

calls, add calendar entries, get location, make arbitrary
network requests.

• Inmobi: send SMS and email messages, start phone calls,
and modify the users calendar.

If an adversary were able to masquerade as one of these
ad servers and supply malicious code, she would be able to
perform any of the above functions on her target’s device.
In practice, an attacker can impersonate an ad server since
the ad request and reply are sent in clear text. Then, if any
user on the network were using an application containing one
of the above four ad libraries, that user would be vulnerable
to loss of personal data or other malicious actions. As these
four ad libraries are in the top thirteen based on our metrics
(Section IV), there are likely many devices vulnerable to this
type of attack.

2) Proof-of-Concept: To demonstrate the significance of
this vulnerability, we set up a test environment and attempted
to exploit the Mobclix and mOcean ad libraries. Our test envi-
ronment used a Samsung Galaxy Nexus as the victim device.
To simulate the user’s vulnerable application, we used our
sample Mobclix and mOcean applications, which continuously
request ads from the ad servers. We then impersonated the ad
servers and supplied our malicious JavaScript in a response to
an ad request.

In both cases, we were able to perform a successful end-to-
end attack on our victim device. From the Mobclix ad library,
we were able to obtain a stream of image data from an image
that the user selected. From the mOcean ad library, we were

able to initiate a phone call to an arbitrary number with no
user interaction. An attacker could monetize this exploit by
initiating phone calls to 0900 numbers on victims’ devices.
We were also able to obtain the device’s location and start the
email application with a pre-populated address, subject, and
message from the mOcean ad library.

VI. PRIVATE DATA ON THE NETWORK

In this section we report what private user information
each ad library is capable of sending over the network. As
mentioned in Section IV, we observed each library’s behavior
both in an emulated environment as well as in live traffic,
allowing us to determine which fields were present in ad
requests. To determine how the fields were populated, we
referenced the provider’s documentation and noted which
fields were required and had to be specified by the developer
when calling the library. We determined which fields the
library would set automatically by observing the permissions
that the ad library used. The results of our analysis are outlined
in Table II. We consider privacy leaks over the network to be
particularly suceptible to observers on the network who are
able to observe many ad requests from the same user.

We discovered a number of different behaviors regarding
how ad providers handle private user information. The Admob
library, for example, will always send the app package name
over the network, however it will not attempt to collect
location information on its own; instead, the developer must
query for the GPS coordinates separately and explicitly pass
these values into the library when requesting an advertisement.
Libraries such as Airpush, however, will automatically include
GPS coordinates in ad requests when either of the GPS
permissions are available. Likewise, information that can be
gathered from permissions such as connection type (cellular
versus WiFi) and device ID are often gathered and sent by
various ad providers. This is especially problematic when the
developer is not informed of the behavior of the library and
is not given the ability to turn off these features.

Targeting parameters such as the user’s age, gender, or
income typically cannot be gathered automatically by the
libraries and must be explicitly set by the developer in order for
these fields to appear in requests. However, if the developer
cannot collect this information, she may statically set these
fields in the hopes of targeting the application’s user demo-
graphic, and therefore increasing her revenue. Thus, when
observing targeting fields on the network, the values may not
accurately correspond to users. An adversary may be interested
in obtaining a targeted user profile for a particular device.
A wily adversary could account for static data by building a
long-term profile on the user based on their device or Android
ID and aggregate targeting information across many apps and
ad providers. Targeting information that is consistent across
numerous independent sources would likely be correct. We
discuss how tracking the user over these sources would be
accomplished in Section VII.

As previously mentioned, ad providers do not typically
encrypt ad requests because of the extra overhead that is



Ad Library (version) A
pp

Pa
ck

ag
e

N
am

e

G
PS

C
oo

rd
in

at
es

C
on

ne
ct

io
n

Ty
pe

D
ev

ic
e

M
ak

e
an

d
M

od
el

W
ir

el
es

s
C

ar
ri

er

A
ge

G
en

de
r

In
co

m
e

L
ev

el

K
ey

w
or

ds

adfonic (1.1.4) P P D D D
admob (4.3.1) A D D D D

airpush (Feb 2012) A P A A
buzzcity (1.0.5)

greystripe (1.6.1)
inmobi (3.0.1) A P P A D D D
jumptap (2.3) P D D D

millennialmedia (4.5.1) D D D D
mobclix (3.2.0) D
mOcean (2.9.1) A P D D D D D
smaato (2.5.4) A P P P D D D D
vdopia (2.0.1) A A
youmi (3.05) A

TABLE II: Private Data in Ad Requests Some fields ad libraries will always populate in ad requests (A) while others it will
populate only when the application has the appropriate permissions (P), both automatically. Alternatively, some ad libraries
choose to only populate fields when the developer explicitly passes the value to the library (D).

required on the ad server to support large numbers of SSL
connections. However, we did observe one ad provider, which
attempts to obfuscate ad requests from an observer on the
network. While Youmi doesn’t encrypt the ad requests, it
does do considerable work to make the requests difficult to
read (interestingly, Youmi is the only Chinese ad provider we
observed). Unlike other ad libraries, Youmi sends back the
majority of its payload in a single HTTP GET field which
appears to be a completely random string. Since the content
of the network requests is a focus of this paper, we manually
analyzed the Youmi ad library to discover how this field was
created.

A. Youmi Encoding

First, we decompiled the ad library using baksmali [14]. We
then manually reviewed the smali code and found that much of
the encoding happens in a single class. They use an unknown
encoding scheme which we believe may be proprietary; it
transforms its input using bitmasks, bit shifts, scaling and other
operations using a second string as a “key” to the encoding.
We believe that a corresponding decoding algorithm could
be created by reversing the encoding algorithm. However, to
actually decode the URLs, we would need to determine what
key was used. This may be difficult as it could be based on
a shared secret embedded by Youmi in the ad library when a
developer downloads it.

Since Youmi is the only ad provider that attempts to conceal
the data being sent off the device, we wanted to determine if
it was doing this to protect the user’s privacy or because it had
something to hide. As we aren’t able to decode the outgoing
requests, our only choice was to analyze the library. Rather
than spend substantial time trying to understand the obfuscated
library (perhaps output from Proguard [30]), we decided to
inject our own code into the library to record the strings

that were being encoded. We did this by decompiling the
application using apktool [6], adding our custom logging class
to the code base, and then adding hooks at the beginning and
end of the encoding method to print the parameters and return
values, respectively. We then recompiled the applications using
apktool and installed it on an emulator. Our instrumented
application allowed us to determine that Youmi does not send
anything out of the norm.

Interestingly, in the same class that Youmi does the encod-
ing, it has a method to do symmetric encryption. There was
a second class of network requests that we were unable to
decode and we hypothesize that these requests were generated
using encryption rather than the encoding described above
since these requests also appear to contain a unique identifier
which the Youmi servers would need in order to lookup
the correct decryption key. We hope to determine what the
encryption’s purpose and if it is possible for an attacker to
figure out the symmetric key in future work.

Youmi’s encoding scheme is a step towards protecting users’
privacy, however, it may not be secure enough to prevent a
determined attacker. We discuss how their encryption scheme
could be better implemented in Section VIII-A.

VII. TRACKING USERS

Web ad providers have long tracked users across sites and
several web ad providers may even collaborate to track users.
However, the consistency of Android UDIDs allows for even
more effective long-term user tracking, as they either never
change or can only be changed with root privilege or flashing
the phone. Figure III lists the UDID each ad library transmits
and the hashing mechanism it uses, if applicable. We are
concerned with two primary threats to mobile user privacy:
an unscrupulous ad provider tracking users across several



installed applications and a network sniffer tracking users
across several ad providers.

An ad provider may correlate a user’s ad traffic across each
application they’ve installed containing their ad library. This
is because every ad provider consistently transmits the same
UDID field (hashed or unhashed UDID value) regardless of the
application in which it is included. For example, even though
Admob sends the md5 of the ANDROID ID, every application
on a user’s phone containing Admob will transmit the same
value, allowing Admob to correlate targeting information
provided by all of the user’s applications that use Admob.

Additionally, a further concern involves a network sniffer
that may track users across several ad libraries. The key lies in
that some ad libraries transmit device identifying information
in clear text. As shown in Table III, some ad libraries transmit
a user’s UDID in clear text while others first hash it. As
mentioned above, ad requests using the same library can be
trivially correlated, as multiple applications using the same ad
library will process and send the UDID identically. If every ad
library hashed UDIDs differently then it would be impossible
for a network sniffer to determine that two ad requests from
different ad libraries are from the same user, assuming they use
cryptographic hash functions. However, once a user’s UDID
is seen in the clear, the network sniffer can determine when
ad requests from other libraries originate from that user by
hashing the clear text UDID in the same manner as the various
ad libraries. For instance, if an eavesdropper can capture ad
requests to the Jumptap and Mobclix ad servers (therefore
capturing both the DEVICE ID and ANDROID ID in clear text),
then she can correlate subsequent requests to any ad provider
from that user. Determining the hashing method used by ad
libraries is straightforward, as the ad library can be reverse
engineered.

This correlation across ad providers is not possible for
an attacker sniffing in-browser ad traffic because web ads
use cookies and other means to track users that are usually
randomly generated. As the source of the tracking identifier
is random and not based on an attribute unique to a user, one
cannot build a user profile by correlating information received
from different web ad provider requests.

VIII. POTENTIAL SOLUTIONS

In this section we propose potential solutions to the cen-
tral problems we encountered when reviewing Android ad
libraries: the failure to protect sensitive user data in trans-
mission, mishandling of UDIDs, and the general issue of
Android ad and application code having the same privileges. In
proposing these solutions, we consider a threat model in which
sensitive user information is collected either by malicious ad
providers (who wish to be able to better target users) or a
network sniffer who is able to observe ad requests coming
from an Android device. We do not consider application
developers to be malicious, but they may be uninformed or
apathetic toward user privacy concerns when they choose to
include an ad library in their application. Finally we do not
consider the advertisers, whose ads are shown to the user, in

the threat model because they generally are not in a privileged
position to infringe on users’ privacy.

A. Failure to Protect the Contents of Ad Requests

When it comes to protecting sensitive information during
transmission, developers can use encryption to communicate
without the fear of eavesdropping. Since ad requests contain
sensitive information about the user, one would expect these
transmissions to use some form of encryption; however, all
the ad libraries we analyzed in this paper sent the information
in the clear except for Youmi (Section VI-A).

Given the ease with which developers can encrypt their
communications, it may seem surprising that they don’t. We
hypothesize that this is due to scalability issues with SSL.
SSL is designed for long-term, persistent connections, and ad
requests are short and must be handled in a timely manner
so the user experience is not hindered waiting for ads. When
communication is encrypted with SSL there is additional setup
overhead which translates to more concurrent connections
being open on the server at a given time. Considering the
sheer volume of ad requests, even a moderate increase in the
number of concurrent connections can require the ad provider
to increase their hardware to ensure that they can still handle
peak loads. Since the primary goal of ad providers, as with
all businesses, is profit and there are little to no ramifications
to the ad provider for not protecting the user’s privacy, they
will probably never use encryption unless a scheme can be
designed which addresses the scalability issues.

In order to encourage adoption, an encryption scheme
suitable for ad requests should have:

1) Low overhead: no session should have to be initiated in
order to reduce the number of concurrent connections.

2) Fast encryption/decryption: symmetric key encryption is
preferable over asymmetric encryption.

In the current ad-serving environment, it is not critical for our
encryption scheme to be computationally infeasible to brute-
force for a single ad request. This is because a single ad
request contains little personal information on its own – we
have shown the real danger to privacy occurs when ad requests
can be observed over a long period of time to build a long-
term profile on a user. Thus, our goal is for the encryption
scheme to be at least computationally infeasible to brute-force
a large number of ad requests so that building a user profile
is no longer profitable to the adversary. We leave the design
of such a scheme for future work.

B. Mishandling of UDID

Currently, each ad library handles UDIDs differently —
some use a cryptographic hash and others send it off in the
clear. A user’s privacy must be protected against a network
sniffer attempting to build a user profile across several ad
providers and from an unscrupulous ad provider attempting
to track a user across several applications. Recall from Sec-
tion VII that it only takes one ad library sending clear text
UDIDs to allow a network sniffer to correlate users across ad



Ad Library (version) UDID Generation Scheme

adfonic (1.1.4) sha1(ANDROID ID)
ANDROID ID

admob (4.3.1) md5(ANDROID ID)
airpush (Feb 2012) md5(DEVICE ID)

buzzcity (1.0.5) DEVICE ID

greystripe (1.6.1) DEVICE ID
ANDROID ID

inmobi (3.0.1) md5(ANDROID ID)
ANDROID ID

jumptap (2.3) ANDROID ID

millennialmedia (4.5.1)
sha1(ANDROID ID)
md5(ANDROID ID)

ANDROID ID

mobclix (3.2.0) DEVICE ID
ANDROID ID

mOcean (2.9.1) md5(DEVICE ID)
md5(ANDROID ID)

smaato (2.5.4) DEVICE ID
ANDROID ID

vdopia (2.0.1) ANDROID ID

youmi (3.05) encode(DEVICE ID)

TABLE III: UDID’s Per Ad Provider Here we show how each ad provider populates its UDID field and thus how it is possible
to recognize an ad request is from the same user across multiple ad providers. Ad libraries which have multiple encoding
schemes will attempt to use the first one and only send subsequent ones in case of failure (ie. not having permissions or the
appropriate hash function).

providers. Thus ad libraries should transmit

hash(ad provider + UDID)

so the original UDID is never leaked and even if multiple ad
providers use the same UDID the transmitted fields will not
be identical.

However, this hash scheme will not prevent a single ad
provider from tracking a user across several applications, as
the hashed value will be the same for each ad provider on the
same phone. This attack can be prevented by adding to the
hash something unique to each application. For example,

hash(ad provider + package name + UDID)

will be different for every ad provider for a given application
and different across applications for a single ad provider,
preventing tracking from both a network sniffer and an un-
scrupulous ad provider.

C. Lack of Ad and Application Privilege Separation

Ad libraries used by Android applications have access to all
of the sensitive information and functionality as their contain-
ing application. This is both a violation of the principle of least
privilege as well as a real world issue, as we found several
popular ad libraries take advantage of this access (Section V).
On the web, the same origin policy restricts ad code from
reading or manipulating the publisher’s content. We believe
there is a need for a mobile application same origin policy,
as the current situation does not provide adequate measures to
protect users from unscrupulous ad libraries. Several important
requirements of an effective mobile application same origin
policy include:

• Application and included third-party code should not
execute with the same privileges.

• Third-party code should not be allowed to access
application-specific data nor phone user data unless
specifically allowed by the user.

• If a permission is not explicitly granted to ad code then
any request that requires it is denied.

Two potential methods to implement a mobile application
same origin policy are to (1) separate ad libraries into their
own applications or (2) restrict sensitive functionality based
on the caller. If each ad provider had their own standalone
application that would provide applications with ads via IPC,
the permission separation problem would be solved; ad ap-
plications would only have the set of permissions they were
granted at install time, easily reviewed by users. However, this
complicates developers being compensated as users may refuse
to install ad serving applications and developers may need to
add checks in their code to ensure the availability of an ad
provider, increasing code complexity. This solution also does
not address the overall problem of privilege separation in third-
party code — libraries to communicate with web applications
and other functionality are not restricted.

We believe a better solution to the privilege separation
problem is to restrict access to sensitive functionality by the
source of the caller. This would increase user privacy while
allowing nearly all of the current in-app ad distribution system
to remain unchanged; ad providers would distribute libraries
that developers could use to display ads. Quire [9] could be
used to outfit Android with verifiable call chains of IPCs,
allowing a modified Android framework to respond differently
to sensitive functionality requests based on if it was originating
from application code or third-party code. One potential way
to distinguish application from library code is by package
name, as every application already specifies its package in
its manifest file. An additional entry type could be created for



the Android manifest file that explicitly grants third-party code
permissions. For example,

<uses-permission package="com.admob"
android:name="INTERNET" />

This approach informs users of the information an ad library
may collect and grants developers the ability to control the
capabilities of third-party code.

IX. RELATED WORK

Previous work on online advertising privacy has focused pri-
marily on in-browser advertising. Researchers have considered
the dichotomy that exists between the ad providers, who want
to target users to serve them the best ads, and the users, who
do not want private information divulged [11, 17]. Approaches
to mitigating privacy leaks in browser-based ad requests have
focused on keeping private data from needing to be accessed
by ad providers themselves [23], as well as regulations that
keep ad providers from collecting private information in the
first place [18]. A great deal of work concerning ad fraud,
which hurts the advertisers who are paying for the ads, has
been conducted [15, 43], but this work is not directly related
to user privacy.

Privacy-conscious advertising models have been considered
as a possible solution to user privacy concerns in in-app adver-
tising [12, 24, 44]. Location privacy is of particular concern
to mobile users, and users are generally not willing to share
their location with advertisers when given the choice [28].
Solutions that allow location-dependent services to function
without disclosing user location have been proposed [32], and
such schemes could be adopted for ad serving if they were to
be implemented.

User privacy on Android has been explored extensively
in the literature. Previous work has focused on educating
users to privacy vulnerabilities [29], as well as detecting and
mitigating unwanted privacy leaks on the Android platform,
both statically [16] and in real-time [10, 9]. However, none of
these approaches have yet to be widely adopted and privacy
concerns are still an open topic in the mobile sphere. Android
permission security and permission-hungry applications have
been studied in terms of privacy vulnerabilities [4, 13], and ca-
sual analysis of permission requirements of Android libraries
has been previously considered [25].

In concurrent work, Grace et al. [21] analyze 100 ad
libraries for potential risks to security or privacy. Using
their automated tool, AdRisk, they detect which permissions
the ad library uses based on approaches developed in [13]
with findings similar to Table I. However, AdRisk did not
investigate whether these permissions were required, optional
or undocumented. In addition, they look for other code patterns
of interest such as dynamic code loading, permission probing
and JavaScript linkages within the ad libraries. In contrast, we
focus on investigating privacy concerns such as how UDIDs
are handled and what user data is sent in ad requests. Several
other recent works have acknowledged the dangers of the lack

of privilege separation between Android application and and
ad code and propose methods of separating them [38, 41].

Additional concurrent work by Luo et al. [31] investigates
security concerns in exposed JavaScript interfaces in Web-
View, much like Section V-C. Whereas our work looks at
exposed interfaces in popular advertising libraries, they look
at WebView more generally and point out a number of dif-
ferent attacks that can be performed that leverage WebView’s
functionality.

X. CONCLUSION

We have considered a number of privacy vulnerabilities in
the most popular Android advertising libraries. Almost all
of the libraries have functionality that allows for sensitive
user data to be sent to the ad provider, although we con-
sider the cases where the library automatically extracts and
sends information when permissions are available to pose the
greatest privacy threats. Additionally, we observed a number
of ad libraries that check for and leverage permissions beyond
what is specified in their documentation. Although no single
ad provider may provide a complete private user profile, we
identified that the UDID field present in nearly all in-app ad
requests allows someone observing the network to correlate
user information between different ad providers. Because the
UDID fields are populated by persistent values, this allows
the observer to build a long-term user profile including GPS
locations and targeting information. We note there are no
equivalent persistent UDID fields when viewing ads through
a browser, and thus these privacy vulnerabilities are unique
to Android in-app advertising. Finally, we proposed potential
solutions to several common ad library privacy vulnerabilities,
including the failure to protect user data in ad requests,
mishandling of UDIDs, and the lack of privilege separation
between application and ad code on Android.

XI. ACKNOWLEDGEMENTS

The authors would like to thank the anonymous reviewers
for their insightful feedback. This paper is partially based
upon work supported by the National Science Foundation
(NSF) under Grant No. 0644450 and 1018964. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the author and do not necessarily
reflect the views of the National Science Foundation.

Sandia National Laboratories is a multi-program laboratory
managed and operated by Sandia Corporation, a wholly owned
subsidiary of Lockheed Martin Corporation, for the U.S. De-
partment of Energys National Nuclear Security Administration
under contract DE-AC04-94AL85000.

REFERENCES

[1] Adfonic. Feb. 2012. URL: adfonic.com.
[2] Admob. Feb. 2012. URL: admob.com.
[3] Airpush. Feb. 2012. URL: airpush.com.
[4] David Barrera, P. C. Van Oorschot, H. Gnes Kayack, and

Anil Somayaji. “A Methodology for Empirical Analysis of
Permission-Based Security Models and its Application to
Android”. In: (2010).



[5] Tim Bray. Identifying App Installations. Feb. 2012. URL: http:
//android-developers.blogspot.com/2011/03/identifying-app-
installations.html.

[6] Brut.alll. Android-Apktool. URL: http:/ /code.google.com/p/
android-apktool.

[7] Internet Advertising Bureau. IAB Interactive Advertising Wiki.
Feb. 2012. URL: http://www.iab.net/wiki/index.php/Category:
Glossary.

[8] Buzzcity. Feb. 2012. URL: buzzcity.com.
[9] M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and D.S. Wallach.

“Quire: lightweight provenance for smart phone operating
systems”. In: USENIX Security. 2011.

[10] William Enck, Landon P. Cox, and Jaeyeon Jung. “TaintDroid:
An Information-Flow Tracking System for Realtime Privacy
Monitoring on Smartphones”. In: (2010).

[11] David S. Evans. “The Online Advertising Industry: Eco-
nomics, Evolution, and Privacy”. In: Journal of Economic
Perspectives (2009).

[12] A. Fawaz, A. Hojaij, H. Kobeissi, and H. Artail. “An on-
demand mobile advertising system that protects source privacy
using interest aggregation”. In: Wireless and Mobile Comput-
ing, Networking and Communications (WiMob), 2011 IEEE
7th International Conference on. Oct. 2011, pp. 127 –134.
DOI: 10.1109/WiMOB.2011.6085414.

[13] A.P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner. “An-
droid permissions demystified”. In: Proceedings of the 18th
ACM conference on Computer and communications security.
ACM. 2011, pp. 627–638.

[14] Jesus Freke. Smali/Baksmali. URL: http://code.google.com/p/
smali.

[15] Mona Gandhi, Markus Jakobsson, and Jacob Ratkiewicz.
“Badvertisements: Stealthy click-fraud with unwitting acces-
sories”. In: Online Fraud, Part I Journal of Digital Forensic
Practice, Volume 1, Special Issue 2. 2006.

[16] C. Gibler, J. Crussell, J. Erickson, and H. Chen. “Androi-
dLeaks: Automatically Detecting Potential Privacy Leaks in
Android Applications on a Large Scale”. In: Trust and Trust-
worthy Computing (June 2012).

[17] A. Goldfarb and C. Tucker. “Online display advertising:
Targeting and obtrusiveness”. In: Marketing Science (2010).

[18] A. Goldfarb and C. Tucker. “Privacy regulation and online
advertising”. In: (2010).

[19] Google. Android Market. URL: http://market.android.com.
[20] Google. Building Web Apps in WebView. URL: http : / /

developer.android.com/guide/webapps/webview.html.
[21] M. Grace, W. Zhou, X. Jiang, and A.R. Sadeghi. “Unsafe

Exposure Analysis of Mobile In-App Advertisements”. In:
Conference on Security and Privacy in Wireless and Mobile
Networks (WiSEC). 2012.

[22] Greystripe. Feb. 2012. URL: greystripe.com.
[23] S. Guha, B. Cheng, A. Reznichenko, H. Haddadi, and P. Fran-

cis. “Privad: Rearchitecting online advertising for privacy”. In:
Proceedings of Hot Topics in Networking (HotNets) (2009).

[24] Hamed Haddadi, Pan Hui, and Ian Brown. “MobiAd: private
and scalable mobile advertising”. In: Proceedings of the fifth
ACM international workshop on Mobility in the evolving
internet architecture. MobiArch ’10. Chicago, Illinois, USA:
ACM, 2010, pp. 33–38. ISBN: 978-1-4503-0143-5. DOI: http:
//doi.acm.org/10.1145/1859983.1859993. URL: http://doi.
acm.org/10.1145/1859983.1859993.

[25] P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wether-
all. “These aren’t the droids you’re looking for: retrofitting
android to protect data from imperious applications”. In:
Proceedings of the 18th ACM conference on Computer and
communications security. ACM. 2011, pp. 639–652.

[26] InMobi. Feb. 2012. URL: inmobi.com.
[27] Jumptap. Feb. 2012. URL: jumptap.com.

[28] Patrick Gage Kelley, Michael Benisch, Lorrie Faith Cranor,
and Norman Sadeh. “When are users comfortable sharing
locations with advertisers?” In: Proceedings of the 2011 an-
nual conference on Human factors in computing systems. CHI
’11. Vancouver, BC, Canada: ACM, 2011, pp. 2449–2452.
ISBN: 978-1-4503-0228-9. DOI: http://doi.acm.org/10.1145/
1978942.1979299. URL: http://doi.acm.org/10.1145/1978942.
1979299.

[29] J. King, A. Lampinen, and A. Smolen. “Privacy: Is there
an app for that”. In: Proceedings of the 7th Symposium On
Usable Privacy and Security (SOUPS). 2011.

[30] Eric Lafortune. Proguard. URL: http://proguard.sourceforge.
net.

[31] T. Luo, H. Hao, W. Du, Y. Wang, and H. Yin. “Attacks on
WebView in the Android system”. In: Proceedings of the 27th
Annual Computer Security Applications Conference. ACM.
2011, pp. 343–352.

[32] Masanori Mano and Yoshiharu Ishikawa. “Anonymizing user
location and profile information for privacy-aware mobile
services”. In: Proceedings of the 2nd ACM SIGSPATIAL
International Workshop on Location Based Social Networks.
LBSN ’10. San Jose, California: ACM, 2010, pp. 68–75.
ISBN: 978-1-4503-0434-4. DOI: http://doi.acm.org/10.1145/
1867699.1867712. URL: http://doi.acm.org/10.1145/1867699.
1867712.

[33] Millennial Media. Feb. 2012. URL: millennialmedia.com.
[34] Elinor Mills. Firms embrace Do Not Track for targeted ads

only. Feb. 2012. URL: http://news.cnet.com/8301- 1009 3-
57384193-83/firms-embrace-do-not- track-for- targeted-ads-
only/.

[35] Elinor Mills. Obama unveils Consumer Privacy Bill of Rights.
Feb. 2012. URL: http : / / news . cnet . com / 8301 - 1009 3 -
57383300 - 83 / obama - unveils - consumer - privacy - bill - of -
rights/.

[36] Mobclix. Feb. 2012. URL: mobclix.com.
[37] Mojiva. Feb. 2012. URL: mojiva.com.
[38] P. Pearce, A.P. Felt, G. Nunez, and D. Wagner. “AdDroid:

Privilege Separation for Applications and Advertisers in An-
droid”. In: Proceedings of the 7th ACM Symposium on Infor-
mation, Computer and Communications Security. ACM. 2012.

[39] Nicole Perlroth and Nick Bilton. Apple, Google and Others in
Agreement on App Privacy. Feb. 2012. URL: http://bits.blogs.
nytimes.com/2012/02/22/california-attorney-general-reaches-
deal-on-app-privacy/.

[40] Same Origin Policy. Feb. 2012. URL: http : / /www.w3.org /
Security/wiki/Same Origin Policy.

[41] S. Shekhar, M. Dietz, and D.S. Wallach. “AdSplit: Separating
smartphone advertising from applications”. In: Arxiv preprint
arXiv:1202.4030 (2012).

[42] Smaato. Feb. 2012. URL: smaato.com.
[43] B. Stone-Gross et al. “Understanding Fraudulent Activities in

Online Ad Exchanges”. In: (2011).
[44] V. Toubiana, A. Narayanan, D. Boneh, H. Nissenbaum, and S.

Barocas. “Adnostic: Privacy preserving targeted advertising”.
In: 17th Network and Distributed System Security Symposium.
2010.

[45] Vdopia. Feb. 2012. URL: mobile.vdopia.com.
[46] Youmi. Feb. 2012. URL: youmi.net.


